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Time-evolving bubbles in two-dimensional 
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A general class of exact solutions is presented for a time-evolving bubble in a two- 
dimensional slow viscous flow in the presence of surface tension. These solutions can 
describe a bubble in a linear shear flow as well as an expanding or contracting bubble 
in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a 
simple behaviour in the sense that for essentially arbitrary initial shapes the bubble its 
asymptote is expanding circle. Contracting bubbles, on the other hand, can develop 
narrow structures (‘near-cusps’) on the interface and may undergo ‘breakup’ before 
all the bubble fluid is completely removed. The mathematical structure underlying 
the existence of these exact solutions is also investigated. 

1. Introduction 
The study of the deformation and breakup of drops and bubbles in a slow viscous 

flow is of practical significance to many physical processes such as the rheology of 
emulsions and mixing in multiphase viscous systems. Following the pioneering work 
by G. I. Taylor (1932, 1934), there has been a great deal of both theoretical and 
experimental research on the subject. The reviews by Acrivos (1983) and Rallison 
(1984) summarize the state of affairs in the early eighties. In many of these early 
studies the term ‘drop breakup’ usually does not refer to the fragmentation of a 
drop, but to the non-existence of a steady solution when the applied shear strength 
exceeds some critical value. In the past decade, however, there have been a number of 
mainly experimental and computational investigations of the actual dynamics leading 
to breakup. These have recently been reviewed by Stone (1994). 

Analytical solutions for the time evolution of a general three-dimensional drop or 
bubble in a slow viscous flow do not appear amenable to currently known techniques. 
The simplified case of two-dimensional bubble flows, on the other hand, is analytically 
tractable through complex variable methods, and their study might shed some light 
on important qualitative aspects of axisymmetric three-dimensional flows. In this 
vein, Richardson (1968, 1973) has obtained exact steady solutions for an inviscid 
two-dimensional bubble in linear and parabolic flows, while Buckmaster & Flaherty 
(1973) have found approximate solutions for a drop with the same viscosity as the 
ambient fluid. More recently, Antanovskii (1994b) reported exact steady solutions 
for a plane bubble placed within a generic polynomial viscous flow. Some of the 
bubble shapes obtained in these analytical studies indeed have striking similarities 
with three-dimensional bubbles observed in experiments. 
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There have also been recent analytical investigations of two-dimensional Stokes 

flows with time-dependent free boundaries. In a series of papers, Hopper (1990, 1991, 
1992, 1993) has found several exact solutions for plane Stokes flow solely driven by 
surface tension. Among these are solutions describing the coalescence of two equal 
cylinders (Hopper 1990) and the coalescence of a cylinder with a half-plane (Hopper 
1992)-two problems of interest in viscous sintering. Other solutions include the 
evolution of an ‘epitrochoidal’ viscous blob (Hopper 1990) as well as the closing of 
a ‘hypotrochoidal’ hole (Hopper 1991). Richardson (1992) has recently reviewed the 
basic theory and generalized some of these solutions (e.g. to include the coalescence 
of two unequal cylinders). Howison & Richardson (1994) have also obtained exact 
solutions for epitrochoidal bodies in the presence of suction. In the absence of surface 
tension their solutions develop cusp singularities on the interface (and hence cease to 
be physically meaningful) before the fluid is completely removed. A non-zero surface 
tension, however, allows for total removal of fluid. It should also be mentioned that 
there have been a number of numerical works on two-dimensional and axisymmetric 
three-dimensional Stokes flow with free boundaries in the context of viscous sintering 
(see van de Vorst 1994 for a review). 

The aim of the present paper is twofold: (i) to report a general class of exact 
solutions for a time-euoluing bubble in a two-dimensional Stokes flow and (ii) to 
discuss the mathematical structure underlying the existence of these exact solutions. 
After this paper was first submitted we learned of related work by Antanovskii 
(1994a), where he considered the case of a plane bubble placed within an otherwise 
irrotational viscous flow. In the case of linear flow, on which we focus here, our 
solutions give a generalization of those obtained by Antanovskii (1994~) in that we 
allow for a non-vanishing vorticity at infinity. We also specifically consider expanding 
and contracting bubbles in an otherwise quiescent flow, development of topological 
singularities and near-cusp formation. 

In an earlier paper (Tanveer & Vasconcelos 1994a), we briefly discussed the case of 
specific solutions that show a contracting bubble developing topological singularities 
(‘breakup’) before the bubble shrinks to zero size. Other solutions show that cusps 
can form in the presence of certain symmetries when surface tension is neglected; 
in the presence of surface tension, however, cusp formation is inhibited until all 
the bubble-fluid (‘air’) is extracted. It was also pointed out that contrary to the 
expectations from a Hele-Shaw flow analogy recently made in the literature (Howison 
& Richardson 1994), a circular bubble expanding in a two-dimensional Stokes flow is 
stable, while a contracting one is not. Here in this paper, we report a more complete 
set of such solutions for expanding/contracting bubbles, present detailed analysis of 
the ‘regularization’ effects provided by surface tension, and discuss the mathematical 
structure that, among other properties, guarantees the existence of exact solutions for 
a rather general class of initial conditions. 

The paper is organized as follows. In 92 the problem is mathematically formulated 
in terms of a conformal mapping from the interior of a unit circle to the flow domain. 
The general formulation (in terms of conformal mapping) of two-dimensional Stokes 
flow with free boundaries driven by surface tension has been discussed by, for 
example, Hopper (1990) and Richardson (1992). In fact, a shorter presentation in 92 
could have been achieved by quoting some of their formulas. However, in order to 
make this paper self-contained upon first reading and because there are differences 
in the derivations, we felt that a complete formulation is warranted here. In 93 
we discuss certain global properties of the conformal mapping that underlie the 
existence of exact solutions for the problem. Many of the arguments presented in this 
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discussion transcend the specific details of the problem in question and have been 
found to apply to other two-dimensional free-boundary problems as well (Tanveer 
1993). Accordingly, this section is likely to appeal to researchers interested in finding 
exact solutions to free-boundary problems that can be conveniently cast in terms of 
conformal mapping. For those more interested in the concrete results for a two- 
dimensional Stokes bubble, however, it can be skipped without any loss of continuity. 
In $4 a general class of exact solutions of polynomial type is presented, while the 
following two sections give details for two specific cases. First, in $5 the problem of a 
bubble placed in a linear flow is considered for two particular flow arrangements of 
relevance to experiments: $5.1 describes a bubble in a simple shear flow flow, whereas 
$5.2 focuses on a pure straining flow. The case of expanding/contracting bubbles in 
an otherwise quiescent flow is then addressed in $6. Our conclusions and main results 
are summarized in $7. 

2. Mathematical formulation 
We consider the problem of a bubble placed in a two-dimensional slow viscous 

flow. The fluid inside the bubble has a negligible viscosity and is at a constant 
pressure, which is chosen to be zero without loss of generality. The fluid outside the 
bubble has a viscosity ,u and is incompressible. Under the assumption of no inertial 
effects, gravitational or other body forces, the fluid motion is governed by the Stokes 
equation and the incompressibility condition : 

pV2u = vp 
v * u  = 0, 

where u ( x , y )  is the fluid velocity and p the pressure. 
On the bubble boundary we must ensure continuity of the shear stress and satisfy 

the requirement that the jump in the normal stress across the interface equals the 
product of the surface tension 0 and the curvature K .  These two stress boundary 
conditions can be written as 

- p nj + 2p ejknk = UIC nj ,  (3) 

where the indexes j and k take values 1 and 2 (the Einstein summation convention is 
used in the above), and nl and n2 are the x- and y-component of the outward normal 
unit vector. Here ejk are the components of the rate of strain tensor and are given 
by 

In addition, we must also satisfy the usual kinematic condition that the normal ve- 
locity V,, of a point on the bubble surface is equal to the normal component of fluid 
velocity at that point, that is, 

u.n = V,. (5) 
To completely specify the problem we need to prescribe appropriate boundary 

conditions at infinity. We suppose in general that the bubble is placed in a linear 
flow and its area A is changing at a prescribed rate m, which in general can be a 
time-dependent function. More specifically, we require that far away from the bubble 
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the fluid velocity behaves as 
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where 

Here 00 is the vorticity of the external flow, while Q and PO characterize its strain 
rate. 

It should also be noted at this stage that the problem stated above can be recast in 
terms of non-dimensional quantities if we rescale velocities by a/p, pressure by a / R ,  
and the length and time scales by R and Rp/a, where nR2 is the bubble initial area. 
In these units, the dimensionless parameters characterizing the problem are 

PR P r’ = - r and m‘ = - m. 
a GR 

We prefer however to use dimensional quantities throughout the rest of the paper, 
except where noted otherwise. This is because a different non-dimensionalization is 
appropriate when (T = 0. 

As is well known (Lamb 1945), the problem of two-dimensional Stokes flow can 
be conveniently formulated in terms of a stream function y(x,y), defined as 

so that y relates to the fluid vorticity w through 

v2y = --w 

v4y = 0. 

and obeys the biharmonic equation 

Alternatively, one can formulate this problem in terms of a stress function 4(x,y) 
(Muskhelishvili 1963), defined via 

so that + also obeys the biharmonic equation. Here the time dependence of y and 4 
has been omitted for notational convenience. 

Next we introduce the quantity W(z,Z) = 4 ( x , y )  + iy(x, y ) ,  where z = x + iy and 
the bar denotes complex conjugation. Then according to the Goursat representation 
for biharmonic functions (Carrier, Krook & Pearson 1966), W(z,Z) can be written as 

W ( Z , Z )  = Tf(z) + g(z), (13) 

where f(z)  and g(z) are analytic functions in the fluid region. All the physically 
relevant quantities can now be expressed in terms of the functions f(z) and g(z). 
After a little algebra (see e.g. Langlois 1964), one can easily establish the following 
identities : 
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where a prime indicates a derivative and f denotes the conjugate function: f(z) = fo 
(and similarly for g). The functions f ( z )  and g’(z) must also satisfy appropriate 
boundary conditions, as described below. 

First consider the boundary conditions at infinity. From (14) it follows that 

f ( z )  - $ [pm(t)/p - ~ O O ]  z + B(t) + O(I/Z) as 121 + 00, (17) 

where the functions pm(t) (the pressure at 00) and B(t) are to be determined later. 
Now using (6), (15), and (17), one finds 

g’(z)- ~ ( a o - i P o ) z + B ( t ) + - + O ( 1 / z 2 )  as 121 -00. 

Note that according to (14) and (15) the choice of B(t) does not affect the velocity 
and pressure fields-a specific choice however will be made below for convenience. 

(18) 
m 

2nz 

If we now define 

N E nl + in2 = i(xs + iy,) = iz, = ie”, (19) 

where s is the arclength traversed in the clockwise direction and 8 is the angle between 
the tangent and the real positive x-axis, then the two stress conditions given in (3) 
can be written as one complex equation: 

(20) - pN + 2p(ell + iel2)N = ~ K N .  

Using (14), (16), (19), and the fact that K = -& we find after a straightforward 
calculation that (20) is equivalent to 

where z = o/p and 

Equation (21) can then be integrated once, yielding the following condition on the 
bubble surface : 

H ( z , Z )  = f ( z )  + zf’(Z) + g’(z). 

f ( z )  + zf(Z) + g’(2) = -1-2,. 

(22) 

(23) 
. z  
2 

Here, without loss of generality, the constant of integration has been set to zero. (This 
corresponds to a specific choice of B(t).) From (15) and (23), it also follows that on 
the bubble surface: 

(24) u1 + iu2 = -1-z, - 2f(z). 
2 

Next, we consider the conformal mapping z(5,t) that maps the interior of the unit 
circle in the c-plane to the fluid region (i.e. the exterior of the bubble) in the z-plane, 
such that the 

. z  

= 0 corresponds to the point z = 00. We thus write 

where a(t) can be chosen real and negative in view of the additional freedom of the 
Riemann mapping theorem. Here h(5,t) is assumed analytic in d 1 and such that 
zc # 0 in 151 d 1 at least for some period of time. The kinematic condition ( 5 )  can 
then be written in complex notation as 

(26) 

unit circle (151 = 1). (This can be easily verified by noting the identity 

Im ([zt - (4 + iu2)I /zs> = 0, 

on the 
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u n = Re { (u1 + 1’u~)N) and the fact that Z, = l/zs.) We note also that 
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zs = iczc/lzcl on 111 = 1. (27) 

Inserting (24) and (27) into (26), we obtain the following condition on = 1:  

where 

F(i, t )  = fM5, t),  t). (29) 
The function F(5, t )  thus defined is analytic in 151 < 1, except at the origin where it 
has a simple pole: 

as implied by (17) and (25). Notice, however, that the quantity within square brackets 
in (28) is an analytic function of c everywhere in l[i < 1, since the simple poles at 
[ = 0 in both the numerator and denominator cancel out. From Poisson’s formula 
(Carrier et al. 1966), it then follows that for 151 < 1: 

(31) zt + 2F(C, t )  = “Z(L t )  + iC1 zc, 

where 

and C is a real constant. By taking the limit as 5 + 0 in (31) and matching the 
singular terms on both sides of this equation, we readily obtain 

(33) 

P , ( t )  = -2P Z ( O , t )  + - 9 (34) 

1 c = 2 0 0 ,  

[ :I 
where the dot denotes time derivative. 

Now define 

G(i, t )  = g’(z(i, 0, t), (35) 
which is analytic in 151 < 1, except for a simple pole at 5 = 0; see (18) and (25). 
Inserting (27) into (23), taking the complex conjugate, and using the fact that 4 = l/5 
on 151 = 1, we then find 

which is originally valid on = 1 and therefore elsewhere by analytic continua- 
tion. Using (31) to eliminate F(5, t )  from the equation above, we obtain after some 
simplification 
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(In deriving this, we have made use of the relation 

which follows from the fact that Re]((, t )  = 2/21z1(1, t)l on 151 = 1.) 
The mapping function z(5, t )  is then determined by the requirement that the right- 

hand side of (37) is analytic in 151 < 1, except for a known pole at 5 = 0. (A similar 
procedure was originally used by Hopper (1990, 1991) to construct exact solutions for 
two-dimensional Stokes flow with free boundaries driven solely by surface tension.) 
In 94, we will see explicitly how this requirement determines the evolution of the 
parameters in our solutions. Before doing that, however, we would like to describe in 
the next section the general mathematical properties that underlie the existence of a 
rather broad class of exact solutions. 

3. General properties of singularities 
In this section we shall derive several global properties of the mapping function 

z(c, t )  for arbitrary initial data z(5, 0) analytic in 151 < 1 (except for a simple pole at 
5 = 0) and with z,(r,O) # 0 in 1" d 1 as well. In particular, we shall be interested 
in the behaviour of the singularities of z(5,t) in 151 > 1. We begin by analytically 
continuing (31) into the exterior of the unit circle. Through a standard procedure 
of contour deformation (see Tanveer 1987 for an example), one finds that for > 1 

Now on taking the complex conjugate of (36) on the unit 5 circle, it follows that 

on 151 = 1 and elsewhere by analytic continuation. In view of (40), it is clear that (39) 
can be written as 

Zt = 41Zc + q3z + q2, 
where 

q2(5, t )  = 2 w 1 ,  t).  (44) 

Note from the definitions (32) and (42)-(44) that as long as a solution z(5, t) exists 
for which zy(5,t) is non-zero and analytic in 151 < 1 each of 5-'q1, q2 and q3 will 
remain analytic in 151 > 1. This implies that the corresponding Laurent series on 
151 = 1 will contain only non-positive powers of 5. For instance, one has that on the 
unit circle 

0 

n=-m 

Similar Fourier series representations exist for q3(eiv, t )  and ecivq1 (e", t). 
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In order to further elucidate the properties of the evolution equation (41) in 
2 1, it is convenient to introduce the projection operator 9~ acting on the class 

of functions u(v) with a convergent Fourier representation 
m 

where 9 N  for N 3 0 is defined by 

n=N+l 

On applying the operator 9~ to (41), it follows that the projection b ( v , t )  = 
9Nz(eiv, t )  satisfies the following evolution: 

b2“, = .pN [-’ ie -iv ql(eiv, t ) ~ , ]  + PN [q3(eiv, t ) ~ ]  . (48) 
It follows from (48) that if %(v, 0) = 0, then b ( v ,  t )  = 0 for all times. This fact implies 
in turn that if z([,O) has no singularities in > 1, except for a ‘pole’ of order N at 
infinity, i.e. z(5,O) * constant x C N  as i + 00, then z(c, t )  will have the same property 
for t > 0. Since z (5 , t )  is a conformal map with only one possible singularity in 
151 -= 1 at = 0, it follows that if we start with an initial condition of the form 

(49) 
40) di, 0) = - + Ni, 01, i 

with h(5,O) an Nth-order polynomial, then for later time we will have 

where h(i ,  t )  will remain a polynomial of the same order. Thus analyticity properties 
of l-lqi, q 2  and q 3  in the extended complex plane >, 1 guarantee the existence of 
polynomial-type exact solutions. 

Now, consider more general initial conditions of the form 
n 

z(i,o) = C E j ( i ,  o)(i - i j ( o ) ) - Y j  + ~( i ,  01, (51) 

with y j  either > 0 or < 0 but not an integer. Then, it is clear that for later times we 
will have 

(52)  

j =  1 

n 

z(i, t )  = C Ej(C, t ) ( l -  C j ( t ) ) - y j  + ~ ( i ,  t), 
j = l  

provided M ( i ,  t )  and E j ( [ ,  t )  are required to satisfy 

M = 41Mr + q3M + q 2 ,  
YjEj  

Ejl = 41 Ejc + 43Ej + - [q l ( i ,  t )  - 41(Cj(t), t )]  9 i - ij 

(53) 

(54) 

while the location of the singularities Cj(t) is determined from 

c . = - q  ‘ 1  l ( C j ( t ) ,  t). ( 5 5 )  

Using the projection operator 9~ on (53), it can be shown with an argument similar 
to that following (48) that if M(5, t )  is initially analytic in 151 > 1 with an Nth-order 
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‘pole’ at co, then it will remain so for later times. Similar property can also be shown 
to hold for each E j ( c ,  t). The analyticity properties of E j ( ( ,  t )  and M(c ,  t )  thus imply 
that the form of an initial singularity of z(5,t)  in 151 2 1 (including that at co) is 
preserved in time. 

Moreover, from the Plemelj formula applied to (32), it follows that Re Z ( 5 , t )  = 
-r/(21z11) in the limit 151 -+ 1+. And since Re I (5 , t )  defines a harmonic function 
everywhere in > 1, the maximum principle for harmonic functions implies that 
Re Z ( c , t )  < 0 in 151 > 1. Using this fact and (42) into ( 5 5 )  it follows that 

Re [ 4 j / c j ]  = -Re I ( c j ,  t )  > 0. (56) 

This corresponds to the statement that the singularities c j  move outwards away 
from the unit circle. This property in fact transcends the restriction implicit in the 
decomposition ( 5 2 ) ;  it actually holds for all singularities. To see this, note that since 
41, q 2  and q 3  are known to be analytic a priori it follows from the general theory 
of first-order linear partial differential equations with analytic coefficients that any 
singularity of z(5, t )  must propagate according to (55).  The fact that singularities (if 
present) move away from the unit circle implies that for a bubble with a smooth 
initial boundary, no finite-angled corners can form; the only possibility that remains 
open is for a zero of zc to impinge on 151 = 1 in finite time causing a zero-angled cusp 
on the interface. The solutions discussed in subsequent sections suggest that this is 
not possible when surface tension is present. However, we could not completely rule 
out this possibility for more general initial conditions. 

Now suppose that all the y, in (51) are integers, so that z((,O) has only a finite 
collection of poles in > 1 in addition to the simple pole at c = 0, i.e. the conformal 
mapping is initially a rational function. Then it is clear from the discussion above 
that as long as the solution exists, z ( ( , t )  will remain a rational function analytic in 

< 1. In other words, the problem admits exact solutions where h(5,t) in (50) is a 
rational function. 

> 1 are preserved as argued 
earlier, the Laurent series on 151 = 1 for each of the functions E j  and M contains 
an infinite number of terms with negative powers of (. This reflects the singularities 
at 5 = l/rs inside the unit circle that are necessarily present beyond the initial 
time. This can be seen by analytically continuing (53) and (54) back inside the unit 
circle. In the representation for z(c , t )  given in (52), such singularities of Ej and M 
cancel each other out on the specific Riemann sheet corresponding to the physical 
domain, since the conformal mapping function z(5, t )  cannot have a singularity in 
151 < 1 other than at 5 = 0. (We remark, however, that there would generally be 
singularities of z(c, t )  in I([ < 1 in other Riemann sheets that can be accessed by going 
around the singularity at c = 5, and coming back inside the unit circle.) Because 
of this complicated singularity structure, it does not appear that explicit solutions 
are possible for non-integral y j .  Nonetheless, since all singularities move away from 

= 1 in this problem, it may be expected that a polynomial approximation (57) of 
the solution (52) on 151 = 1 will only get better with time. Indeed, limited numerical 
calculations by the present authors for a viscous blob suggest that this is true. 

The theoretical discussion in this section thus shows the close connection between 
the existence of exact solutions and the analyticity of ql, q 2  and q3 outside the unit 
circle. It is interesting to note that the equations for the interfacial displacement in 
a Hele-Shaw cell can also be cast in a form similar to (40) when surface tension is 
neglected (Tanveer 1993). In this case, the equations also admit exact solutions in 
terms of polynomials or rational functions (see e.g. Howison 1992 for a review). The 

For non-integral y j ,  while the singularities in 
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difference, however, is that in the Hele-Shaw problem, when a less viscous fluid is 
injected into a more viscous fluid, all initial singularities in 151 > 1 (except that at 
infinity) travel towards 151 = 1 (Tanveer 1993). On the other hand, when the more 
viscous fluid displaces the less viscous one, all singularities move outward. In our case, 
the outward motion of singularities in the [-plane (away from the physical interface) 
is not affected by suction (rn < 0) or injection of bubble fluid (rn > 0) and is found 
to be the same for a viscous blob (unpublished work by the present authors) as for 
a bubble. In this sense, the dynamics here is very different from that of a Hele-Shaw 
cell. 

4. Polynomial exact solutions: general results 
In this section we present a general class of exact solutions for the case in which 

the function h(5,O) is a polynomial of degree N .  Such initial conditions form a dense 
set on the class of smooth initial shapes, so that any given smooth initial condition 
can be approximated by such h(5,O) to any desired accuracy. The arguments of the 
previous section guarantee that h(5,t) will remain a polynomial of the same order 
N .  Because of the outward motion of complex singularities for more general initial 
conditions, it may be expected that the polynomial class of solutions h(5,t) will be 
dense in the class of all analytic solutions. Hence if we start with a polynomial 
approximation h(5, 0) to the true initial shape, the corresponding polynomial h(5, t )  is 
expected to remain a good approximation to the actual interface for later times. Thus, 
the solutions presented below are expected to describe the evolution for essentially 
any smooth initial bubble shape. 

Accordingly, we seek solutions of the form 

where the bj are complex coefficients (and recall a(t) < 0). The problem now consists 
in finding a set of evolution equations for the coefficients a(t) and bj(t). To this end, 
we first multiply both sides of (37) by zi(5, t) to obtain 

2zr(5, W(C, t )  = Zi(5, t )  {z&-l, t )  - r-' P ( 5 7  t )  + ic1 z K 1 ,  t ) }  

According to (18) and (25), as 5 approaches zero the singular behaviour of the 
left-hand side of (58) is given by 

Next consider the Taylor series expansion of I ( { ,  t ) :  
00 

j=l 

where the coefficients l o  and fj are given by (see (32)) 
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To simplify the notation we define lo = I. + iC. Now let R(( ,  t )  denote the right- 
hand side of (58). Inserting (57) and (60) into (%), and after performing tedious 
but straightforward algebra (made easier with the help of a symbolic-computation 
software such as Maple), we find that the singular behaviour of R ( [ ,  t )  as [ approaches 
zero is given by 

N+2 
N C , ~ )  = x r j ( t K - j  + o([) as IC I  --+ 0, (63) 

j =  1 

with the coefficients rk of the form 
N+2-k 

rk = - x k  - ( k  - 1) ijxk+j, 1 < k < N + 2, (64) 
j=O 

where the quantities xk are given by 

XN+2 = ab; (65)  
XN+1 = abL-1 (66) 

(67) 
N+1-k 

xk = ab;-, - c jbjb;+j-l ,  3 d k < N 
j = l  

N -  1 

xz = - c jbjbj+l  
j = l  

N 

X1 = a2 - jlbjI2. 
j=l 

Here an asterisk stands for complex conjugation. 
Comparing (63) with (59) and matching the terms corresponding to the double 

pole at ( = 0, one obtains the function B ( t )  in terms of the coefficients a(t) and bk(t): 

Similarly, by matching the remaining singular terms we obtain the following system 
of ordinary differential equations (ODEs) : 

m XI = - 
.n 

N+2-k 

2, = - (k  - 1) ijxk+j + a2(a - ipo)dk,, 3 < k < N + 2. (72) 

Note that since the area A enclosed by the curve obtained as the image of the unit 
circle under the mapping (57) is given by A = 71x1, it follows that (71) simply recovers 
the condition k = m. Equations (71) and (72) in general give a system of 2N + 1 
ODEs from which one can compute the 2 N +  1 parameters of the conformal mapping 
for specified initial data and external flow. In the rest of the paper we will discuss 
several particular cases of interest. 

j = O  
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5. A bubble in a linear flow 
Throughout this section we assume that the bubble has a constant volume so that 

we set m = 0. The simplest scenario is obtained when there is no imposed external 
flow, in which case all initial shapes relax to a circle. Here however we shall consider 
the more interesting situation in which the bubble is placed in a linear flow. In this 
case, the final (steady) shape is an ellipse whose geometrical parameters depend on 
the external flow. Although the general solutions described in $4 can handle a large 
class of initial shapes, for simplicity we shall focus on the case where the bubble 
possesses an initial circular shape. Below we present exact solutions describing the 
subsequent bubble evolution (deformation) for two specific flows: (i) simple shear 
flow and (ii) pure straining flow. 

5.1. Simple shear $ow 
Here we imagine that the bubble is placed in a simple shear flow: uo = ( r y ,  0), where 
r is the shear strength. In view of (7), we thus set a0 = 0 and PO = -00 = r .  Under 
the assumption that the initial shape is a circle of radius R, one can easily verify 
from the general solutions presented above that for later times the interface will be 
described by a conformal mapping of the form 

S .  Tanveer and G.  L. Vasconcelos 

where b(t) is a complex coefficient (and recall a(t) < 0). Writing b / a  = pei2q, the 
mapping (73) for 151 = 1 gives an ellipse with its major axis forming an angle rp 
;vith the flow direction, while the ratio D of the minor axis to the major axis is 
D = (1 - p)/(l + p). Thus an initially circular bubble in a shear flow will evolve 
through a series of elliptical shapes. 

From (71) and (72) one finds that the time evolution of the coefficients a and b is 
governed by the following ODE: 

d 
- (ab) = - (210 + iT) ab + iTu2, 
dt (74) 

with a(0) = -R and b(0) = 0, together with the area condition 

u2 - lb12 = R2. (75) 

After inserting (73) into (61), using periodicity and changing variables, the quantity 
I. reads 

dv 
1 /2 

I0 = - 
{1+p2-2pcosv} 

where K ( p )  is the complete elliptic integral of the first kind (Gradshteyn 
1980). 

The evolution equations for the parameters p and cp can now be easily 
from (74) and (75). In dimensionless units they read 

rl 
@ =  - (p-'cos2rp-1), 

2 

(76) 

& Ryzhik 

computed 

(77) 

(78) 
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FIGURE 1. Evolution of a circular bubble placed in a simple shear flow with r’ = 1. 

where r’ = R T / z  is the non-dimensional shear strength and the dot now indicates 
differentiation with respect to the dimensionless time t’ = z t / R .  As an example, 
we have integrated this system of ODES for r’ = 1. In figure 1 we show the 
corresponding evolution of the bubble shape towards the steady solution. (Here and 
in subsequent figures successive curves are equally spaced in time.) It is clear from 
(77) and (78) that for the steady shape we have cos2cp = p, with p being given by the 
solution to the equation 

I 

This steady solution was first found by Richardson (1968) through a direct steady- 
state calculation. 

5.2. Pure straining flow 
Now we consider the case of a bubble placed in a pure straining flow: uo = (Qx, -Qy), 
where Q is the rate of shear. In view of (7), we thus set a0 = 2Q and PO = 00 = 0. 
If the initial shape is a circle we then have, as before, that the subsequent shapes 
are given by the conformal mapping (73), but where b(t)  is now a real coefficient 
(i.e. cp = 0, so that b / a  = p).  According to (72), the time evolution is given by the 
following ODE : 

(80) 
d 
- (ab) = -2loab + Qa2, 
dt 

plus the area condition 
a2 - b2 = R2. (81) 

Note that the quantity I0 in this case is also given by (76), since that expression is 
independent of cp. 

The corresponding evolution equation (in dimensionless units) for the parameter p 
now reads 

2 b = -  - p2 [Q’ - - p ( l  x - p’)li2K(p)] , 
1 +p2 
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where Q’ = RQ/z  is the non-dimensional rate of shear and the dot refers once again 
to differentiation with respect to the dimensionless time. For a given Q’, the steady 
shape is thus characterized by the value of p given by the solution to the equation 

I rn 
1 L 
- = -( 1 - P ~ ) ” ~ K ( ~ ) .  
P Z Q  

This steady solution was also first obtained by Richardson (1968). As noted by 
Antanovskii (1994a), there is a critical value of the rate of shear QL = 0.6097 
(corresponding to p c  = 0.8), above which the equation (83) has no solution. For 
0 < Q < QL, there are two possible solutions p1 and p2,  with p1 < p c  < p 2 ;  however 
only the solution p1 is stable (Antanovskii 1994~). Thus for 0 < Q’ < QL, the bubble 
will evolve towards this stable steady solution. This is shown in figure 2 for the case 
Q’ = 0.55. On the other hand, for Q’ > Q’, the bubble will elongate indefinitely. 

6. Contracting/expanding bubbles in a quiescent flow 
In this section, we suppose that the bubble is placed in an otherwise quiescent flow, 

i.e. we set a0 = PO = 00 = 0. For simplicity, the expansion or contraction rate m will 
be taken to be a constant throughout this section. We also assume that the bubble 
is symmetrical with respect to the x-axis so that the coefficients bj  are all real. In 
this case, (72) in general gives a system of N ODES, which together with the area 
condition (71) determine the N + 1 coefficients of the conformal mapping. Before 
discussing the general case, however, we will first consider the simpler case in which 
the initial shape has either elliptical or nth-fold symmetry. 

6.1. ‘Symmetrical’ bubbles 
Here we seek solutions of the form 

z(<,t) = a(t)/< f bN(t)CN, (84) 

where bN(t) is real and assumed for definiteness to be negative. Thus, for N = 1 the 
bubble is an ellipse, whereas for N > 1 it posses ( N  + 1)th-fold symmetry. We also 
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note that in this case i k  vanishes identically for 1 6 k 6 N + 1 .  Using this fact on (72), 
it then follows that if the bk are initially zero for k = 1,. . . , N - 1 ,  they will remain so 
for later times, thus guaranteeing that a mapping of the form (84) does indeed give 
an exact solution. (We remark parenthetically, however, that in general this is not the 
case when the bubble is placed in an external flow?.) The evolution equation in this 
case is (see (72)) 

( 8 5 )  
d 
- (abN) = - (N  + l)loabN, 
dt 

while the area condition (71) after integration reads 

A ( t )  = TC [a2 - Nb:] = [A(O) + mt] , 
where A ( 0 )  is the initial bubble area. Here l o  can be written as 

dv 
1/2 (a2 + N 2 b i  - 2 N a b ~  cos v }  

where p = a / N b N .  We also note, for later use, that in terms of p and A(t )  the 
coefficients a and bN read 

A linear stability analysis of (85) readily shows that an expanding circle is stable 
whereas a contracting one is not. To analyse the behaviour of the solutions above 
in more detail, it is convenient to study the motion of the critical points of the 
conformal mapping, i.e. the points at which q([, t )  vanishes. Denoting such points by 

[ok ,  k = 0, .  . . , N ,  we clearly have: [ok = [ ~ e ’ ~ ” ~ ]  l’(N+l). Using (85) and (86), we find 
that the quantity p evolves according to the following equation: 

(90) 
P = p ( N p 2  - [ z (N  + 1) [ N p 2  - 1 ] 1’2K(l/p) + G] . 

N p 2  + 1 TC NA( t )p2 

In the case of an expanding bubble (m > 0), we immediately see from (90) that 
p increases monotonically with time, so that the zeros c0k move away from the unit 
circle (lrl = 1). Hence the bubble has a tendency to become ‘smoother’ with time and 
asymptotes an expanding circle as t -+ 00. An example of such a case is presented in 
figure 3 where we show a sequence of interface shapes for N = 1 (elliptical bubbles) 
and m’ = 1 (see (8)). It should also be noted that the results discussed in this 
paragraph are true in general, that is, for any given initial shape (described by a 
polynomial h ( [ , O ) )  a growing bubble will approach an expanding circle as t -+ 00. 
(This is true even in the absence of surface tension.) 

Consider now the case of a contracting bubble, i.e. m < 0. Here, of course, solutions 
can exist at most up to the time t f  = A(O)/lml, at which the bubble fluid (‘air’) would 
be completely removed from the liquid. We will see below that in the absence of 
surface tension (z = 0), the solutions will in general break-down before this time, 
owing to the formation of cusp singularities on the bubble surface. For z # 0, 
however, the solutions will always exist all the way up to the final time t f .  

t A more general situation for which (84) gives an exact solution is discussed by Antanovskii 
(19944. 
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RGLJRE 3. Expanding bubble with m' = 1. 

We first consider the zero surface tension case. Setting z = 0 in (90) and integrating 
the resulting equation, one finds 

2 4  112 p ( t ) = $ + ( N - ' + y  t )  , 
where 3 = t f  - t and 

m 
y = -  > 0. 

2nNa( 0)bN (0) 
Here a(0) and b ~ ( 0 )  are the prescribed initial data. Thus, in this case the zeros will 
hit the unit circle at a time t ,  = tf - (N - 1)/2Ny, i.e. p(tc) = 1. For N = 1 (elliptical 
bubbles), we then see that the zeros hit the unit circle at precisely the time when the 
bubble area goes to zero. Note that since a ( t f )  = b l ( t f )  # 0 the final stage of the 
bubble in this case is a slit of extension 21a(tf)[ = 2[a(O)b1(0)]'/~. On the other hand, 
for N > 1 the zeros impinge on the unit circle at t = t ,  < t f ,  leading to the formation 
of cusps on the interface and hence the breakdown of the solutions before the air is 
completely removed. 

A non-zero surface tension is expected, on general grounds, to prevent the develop- 
ment of an actual cusp by providing a 'regularization' mechanism. Indeed, one of the 
advantages of the solutions above is that they are simple enough to allow a detailed 
analytical investigation of the regularizing effects of surface tension. For example, 
recalling that K ( l / p )  diverges as p -+ 1+ (Gradshteyn & Ryzhik 1980), we see from 
(90) that the zeros of zc(c,t)  must approach = 1 in the limit that the area van- 
ishes, but they cannot hit the unit circle while the area remains finite. Furthermore, 
here it is also possible to carry out an asymptotic analysis of the final stages of the 
bubble evolution, as indicated below. (A similar study has been recently performed 
by Howison & Richardson (1994) for the case of a blob of viscous fluid with suction, 
where exact solutions with an analogous structure have also been found.) 

We begin our analysis by noting that the leading-order asymptotics of K(l /p)  in 
the limit p + 1+ is given by (Gradshteyn & Ryzhik 1980) 

~ ( l / p )  w -; h ( p  - 1) + O(1). (93) 
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Inserting this into (90) and writing A(t )  = -m?, one finds that as p + 1 

The asymptotic behaviour of p(t) for 3 -+ 0 can now be calculated by balancing the 
most singular terms in (94). Here there are two distinct cases to consider: (i) N = 1 
and (ii) N > 1 .  

For N = 1 (elliptical bubbles), the contribution arising from surface tension effects 
(i.e. the first term in the right-hand side of (94)) is small compared to the other terms, 
so that effectively the time evolution of the solutions is described by 

which upon integration yields 

p - 1 + + 3  as 3 + 0 ,  
for some positive 6. Now according to (89), a linear behaviour in p( t )  as p -+ 1 
implies that a ( t f )  = b ( t f )  # 0, so that elliptical bubbles will shrink to a slit even when 
z # 0. Here the effect of surface tension is simply to reduce the size of such a slit. In 
other words, the larger the surface tension, the smaller the extension of the final slit. 

For N > 1 ,  as the zeros approach the unit circle, surface tension effects tend to slow 
down their motion, so that ‘narrow structures’ (near-cusps) are formed on the bubble 
surface. An example of this process is given in figure 4, where we show a sequence 
of interface shapes for N = 3 and m’ = -1 ,  up to the formation of near-cusps. The 
ensuing ‘slow’ dynamics of the zeros, as the bubble continues to contract, can be 
estimated by balancing the two leading-order terms in the right-hand side of (94), 
that is, 

Solving this for p yields 

where 
p as 3 -, 0, 1 + e-6/i’I2 

a = -  
z(N + 1)  (99) 

Note that, as a consistency check, one can now use (98) to verify that the left-hand 
side of (94) is indeed small compared to the leading-order terms on the right-hand 
side, as initially assumed in the argument above. 

To obtain a qualitative description of the asymptotic shapes as 3 -+ 0, let us 
denote by Lx and &in the maximum and minimum radial distance of a point 
on the interface (relative to the bubble centre). From (84), one readily finds that 
LX = la + bl and &in = la - bl. Defining the deformation D = &in/&ax, we then 
have 

Since the deformation D goes to a constant in the limit p -+ 1 ,  it follows that during 
the late stages the bubble will shrink to a point through a succession of geometrically 
similar shapes. (An analogous phenomenon has also been observed by Howison & 
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FIGURE 4. The evolution of a four-fold symmetric bubble for m’ = -1. 
Note the formation of ‘near-cusps’ on the innermost interface. 

Richardson (1994) for the case of a blob of viscous fluid with suction.) Here the main 
effect of surface tension is to determine the time scale for when the ‘near-cusps’ first 
appear, that is, the greater the surface tension, the later the near-cusp will develop. 

It is interesting to contrast the behaviour of the solutions above with that exhibited 
by the solutions found by Hopper (1991) for the closing of a ‘hypotrochoidal’ hole, 
which are also given by a conformal mapping of the form (84). In his solutions, 
however, there is no externally applied pressure, i.e. pm = 0 for all times, so that 
the dynamics is solely driven by surface tension. In this case, the zeros of the 
conformal mapping always move away from the unit circle. Hence the interface 
becomes smoother with time and the hole shrinks to a point as a circle of vanishing 
radius (Hopper 1991). In our solutions, on the other hand, the presence of an imposed 
suction induces the formation of ‘narrow structures’ (near-cusps) which persist until 
the final time. 

6.2. klsymmetrical’ bubbles 
We have seen above that when the initial shape can be described by a conformal 
mapping of the type given in (57), surface tension effects guarantee that the solutions 
will always exist up to t = tf, by which time the air will have been completely 
removed from the liquid. The situation changes considerably, however, when the 
bubble initially has neither elliptical nor nth-fold symmetry, that is, when not only 
bN(0) # 0 (for N > 1) but also bk(0) # 0 for some k < N .  In such cases, the bubble 
will invariably develop a ‘thin neck whose width will go to zero at a time t = t b  < t f ,  
after which the solutions cease to make physical sense. We thus refer to this process 
as bubble ‘breakup’. In figure 5 we show a sequence of interfaces shapes leading to 
the breakup of the contracting bubble into three smaller ones. In the case shown 
in this figure, the coefficients bl,  b3 and b5 were all initially non-zero and m’ = -1. 
We also found a similar breakup when we took m to be proportional to the bubble 
perimeter instead of a constant, as appropriate for modelling a dissolving bubble gas. 

Since our solutions break down at the time when the two sides of the interface 
‘touch’ each other, we are unable to follow the dynamics of the ‘newborn’ bubbles. 
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FIGURE 5. The evolution of an ‘asymmetric’ bubble leading to bubble breakup for rn‘ = -1. 

We emphasize, however, that no physical quantity blows up as the bubble approaches 
breakup. Here the breakdown of the solutions is caused simply by the loss of 
univalence of the conformal mapping for t > tb (Tanveer & Vasconcelos 1994). 
It should be noted that similar ‘touching’ has also been observed in some of the 
numerical simulations of viscous sintering recently performed by van de Vorst (1994). 

7. Conclusions 
We have presented exact solutions for a bubble with essentially arbitrary initial 

shape evolving in a two-dimensional Stokes flow in the presence of surface tension. 
Our solutions, which are given in terms of a polynomial-type mapping function, 
include bubbles in a linear flow as well as an expanding or contracting bubble in an 
otherwise quiescent flow. It has been noted that the expanding bubble approaches 
a growing circle for later times, while a contracting circular shape is unstable to 
disturbances and can lead to the formation of near-cusps or cause breakup before all 
the bubble fluid is removed. The mathematical structure underlying the existence of 
a broad class of exact solutions has also been discussed in detail. 

As is well known, an inviscid bubble does not break up under the action of a shear 
flow. Our results show however that breakup does occur (at least in plane flows) when 
another driving mechanism, for example suction of bubble fluid, is present. While this 
general tendency to break-up is likely to be present in three-dimensional axisymmetric 
flow as well, it not clear at this point whether different parts of the interface will actu- 
ally touch or merely tend towards to each other. Also, in our solutions the flow inside 
the bubble has been neglected since the viscosity of the inner fluid has been assumed 
to be negligible. Nonetheless, this flow is likely to be important near bubble breakup. 
The effect of a non-zero viscosity ratio thus needs to be examined in the future. 
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Antanovskii to our attention. One of the authors (G.L.V.) would like to acknowledge 
financial support from The Ohio State University Postdoctoral Fellowship. This 
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